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Chapter 9
Optimization in Brain? – Modeling Human
Behavior and Brain Activation Patterns with
Queuing Network and Reinforcement Learning
Algorithms

Changxu Wu, Marc Berman, and Yili Liu

Abstract Here we present a novel approach to model brain and behavioral phe-
nomena of multitask performance, which integrates queuing networks with re-
inforcement learning algorithms. Using the queuing network as the static plat-
form of brain structure and reinforcement learning as the dynamic algorithm to
quantify the learning process, this model successfully accounts for several behav-
ioral phenomena related to the learning process of transcription typing and the
psychological refractory period (PRP). This model also proposes brain changes
that may accompany the typing and PRP practice effects that could be tested
empirically with neuroimaging. All of the modeled phenomena emerged as out-
comes of the natural operations of the human information processing queuing
network.

9.1 Introduction

Elucidating the psychological and physiological processes that mediate cognitive
and behavioral performance has been an important topic for a long period of
time. This topic for many years was studied exclusively with behavioral tech-
niques, and models of behavioral performance had to be inferred exclusively from
behavioral data [13, 45]. Current researchers are now endowed with two addi-
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156 C. Wu et al.

tional techniques to understand and to explain human behavioral performance: neu-
roimaging and computational modeling. With neuroimaging techniques, such as
functional magnetic resonance imaging (fMRI [8]), positron emission tomogra-
phy (PET [9]), and event-related potentials (ERP [29]), researchers can uncover
the neural substrates that mediate behavioral performance. These neuroimaging
techniques not only allow researchers to localize where cognitive processes re-
side in the brain, but also allow researchers to uncover commonalities and dis-
similarities between cognitive tasks, discover individual differences, and test psy-
chological theories and models in ways that behavioral techniques alone could not
uncover [3].

Computational modeling has also been a powerful technique to simulate and
compose models for how behavior is mediated. Computational models can be clas-
sified into a number of categories, including, e.g., connectionist [19, 30, 39], sym-
bolic [24, 31], and hybrid [4, 27, 58, 50, 47, 52, 54, 53, 55, 51, 59, 57, 56, 60, 61, 62].
With these computational models, researchers are able to validate, test, and up-
date psychological theories in ways that behavioral testing alone could not do
easily.

Here we utilize computational modeling to account for changes in performance
both behaviorally and neurally due to practice and learning in the context of tran-
scription typing and the psychological refractory period (PRP; the slowing of a sec-
ondary task when it is initiated during the response of a primary task). This novel
model unifies many disparate findings together into a single model without needing
to make many changes to model parameters.

We chose to model the practice and learning effects in transcription typing and
PRP due to the following reasons. First, transcription typing involves intricate and
complex interactions of perceptual, cognitive, and motoric processes, and modeling
its learning processes can help us understand the underlining quantitative mecha-
nisms in complex motor skill acquisition. Second, there exist brain imaging data
on typing and typing related behavior [17, 23] that could be modeled. In addition,
human behavioral performance data, such as typing speed and typing variability,
have been obtained via several experimental studies (please see the review of Salt-
house [43]).

We modeled the learning effect in PRP for similar reasons. First, PRP is the
simplest and one of the most basic paradigms to study multitask performance
and has been used extensively as a paradigm to study multitask performance.
The PRP effect has been applied in many real-world settings such as driving
[25] and has been used as a measure of dual-task competency [5, 11]. There-
fore, modeling the learning effects in PRP may allow us to account for the ba-
sic mechanisms in the acquisition of multitasking skills. Second, an experimen-
tal study has been conducted to study the learning effect in PRP [48], which
provides important human performance data for modeling. For these reasons we
found transcription typing and PRP tasks good candidates to model skill learning
behavior.
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9 Modeling Human Behavior with Reinforcement Learning 157

9.2 Modeling Behavioral and Brain Imaging Phenomena
in Transcription Typing with Queuing Networks
and Reinforcement Learning Algorithms

9.2.1 Behavioral Phenomena

Salthouse [42] reviewed the major behavioral empirical results of transcription typ-
ing and summarized 29 phenomena in this area. John [22] summarized two addi-
tional behavioral phenomena found by Gentner [16] and [43]. These 31 behavioral
phenomena include 12 basic phenomena, 5 error phenomena, 6 phenomena in typ-
ing units, and 8 skill learning phenomena in transcription typing. We have devel-
oped a queuing network model that successfully modeled 32 behavioral phenomena
in transcription typing including 3 newly discovered eye movement phenomena and
29 of these 31 behavioral phenomena, with the exceptions being 2 phenomena re-
lated to reading and comprehension, whose modeling requires significant extensions
of our model to include production systems and is a current topic of our ongoing
research [47]. In this chapter we focus on modeling the learning aspects of the be-
havioral phenomena and brain imaging phenomena.

The first typing phenomenon that we modeled was changes in interkey response
time of transcription typing, which decreases accordingly to the power law of prac-
tice [16]. For example, typing speeds of an unskilled typist (about 30 words per
minute [21]) can be improved to that of a skilled typist (about 68 words per minute
[42]).

The second phenomenon involved the variability of interkey intervals which de-
creases with the increased skill of the typist. In addition, the interquartile range of in-
terkey intervals correlates significantly with typist’s net interkey intervals (p < 0.05
[41]). The third behavioral phenomenon that we modeled that we will describe in AQ1

this chapter was modeling the rate of repetitive tapping, which is greater among
more skilled typists and the correlation between repetitive tapping speed and net
typing speed is reliable (p < 0.05, [41]).

9.2.2 Brain Imaging Phenomena

Recently, brain imaging studies (fMRI and PET) have discovered two phenomena
related to transcription typing. First, it has been found that at the beginning stages of
learning a visuomotor control task, including transcription typing, the dorsal lateral
prefrontal cortex (DLPFC), the basal ganglia, and the pre-SMA are highly activated
[31,40]. After practice, activation of the DLPFC disappears and strong activation is
observed in the supplementary motor area (SMA), the basal ganglia, and the primary
motor cortex (M1) in addition to slight activation in the somatosensory cortex (S1)
[17].
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Second, in the well-learned stages of typing (skilled typist in [17]), when stim-
uli to be typed are repetitive letters (e.g., AAA...), M1 is strongly activated, how-
ever, when stimuli to be typed are multiletter sentences (e.g., JACK AND...), M1 is
strongly activated, but there is more robust activation in the SMA, the basal ganglia,
and S1.

9.2.3 A Queuing Network Model with Reinforcement Learning
Algorithms

9.2.3.1 The Static Portion of the Queuing Network Model

Queuing network is a mathematical discipline that is used to simulate and model a
wide array of phenomena and systems including manufacturing and computer net-
work performance. A queuing network is a network of servers that provide services
to customers that wait in queues before they are serviced. Queuing networks tend
to be quite flexible and can allow two or more servers to act in serial, in parallel,
or in any network configuration [26, 27]. Computational models based on queuing
networks have successfully integrated a large number of mathematical models of
response time [26] and multitask performance [27]. A queuing network modeling
architecture is called the queuing network. Model human processor (QN-MHP) has
been developed and used to generate behavior in real time [28], including simple and
choice reaction time [14] and driver performance [44]. The model in this chapter ex-
tends QN-MHP by integrating reinforcement learning algorithms and strengthening
its long-term memory and nine motor subnetwork servers. In addition, the queuing
network approach has also been used to quantify changes in brain activation for
different participant populations [4].

The brain, which is an enormously complex network of interconnected systems
and subsystems, acts in concert with one another to produce behavior. This idea is
supported by evidence from pathway tracing studies in nonhuman primates, which
revealed widely distributed networks of interconnected cortical areas, providing an
anatomical substrate for large-scale parallel processing in the cerebral cortex [6]. It
seems, then, that brain areas do not act in isolation from another and instead may
form complex neural networks that are the basis of behavior and thought.

In addition to the widely distributed nature of the brain, each brain area may also
have some level of functional specialization [9] and thus each major brain area may
have certain information processing capacities and certain processing time parame-
ters (see Table 9.1). Here we assume that the interconnections between major brain
areas form a queuing network with each major brain area composing a queuing
network server and that information processed at each server is a queuing network
entity. In addition, neuron pathways that connect major brain areas serve as routes
between our queuing network servers (see Fig. 9.1 for transcription typing routing
and Fig. 3.1 a for PRP routing. Note that both networks have the same servers and
overall network configurations). Therefore, it is assumed that the major brain areas
form a queuing network with brain areas as the servers, information processed as
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9 Modeling Human Behavior with Reinforcement Learning 159

entities, and neuron pathways as routes (see Fig. 9.1). Within this general informa-
tion processing structure, the major brain areas activated in the transcription typing
task 10 were identified by the following fMRI and PET studies ( [23, 40, 17], see
Fig. 9.1).

Fig. 9.1: The general structure of the queuing network model (QN-MHP) with routes
and servers involved in transcription typing tasks highlighted (server names, brain
structures, and processing logic and time are shown in Table 9.1).

( [10, 27]. Processing logic and time is based on [38, 14, 37]) If we consider the AQ2

network for transcription typing, as shown in Fig. 9.1, upon completing service
at the Pho server, entities have numerous possible routes to follow to traverse the
network: (1) At the Pho server, the entities can choose one of the three routes to
depart the Pho server to the CE, BG, or M1 servers. (2) At the CE server, entities
can choose to move to the BG, SMA, or M1. (3) At the BG server, entities can move
to the SMA or M1 servers. Therefore, there are a total of 3× 3× 2 = 18 possible
routes for the entities to be processed in the network in transcription typing. An
important question is, therefore, how the entities choose among these routes that
activate (utilize) different brain areas (servers) in different learning stages or when
processing different stimuli at well-learned stages? This question can be answered
by the dynamic part of the model.

9.2.3.2 The Dynamic Portion of the Queuing Network Model:
Self-Organization of the Queuing Network with Reinforcement
Learning Algorithms

Ungerleider et al. [44] found evidence for the reorganization of brain areas with AQ3

practice, which indicates that individual brain areas may change their information
processing speeds in learning. Moreover, some brain areas may have error detection
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Table 9.1: Server name, major function, and brain structure

Server Brain structure Major function (Processing logic)

Eye Eye, LGN, SC, Visual pathway Visual sampling and signal
transmission

VSen Distributed parallel area, superior
frontal sulcus, dorsal and ventral

system

Visual sensory memory and
perception

Pho Left posterior parietal cortex,
inferior parietal lobe

Phonological loop to store
auditoria

and textual information
CE Dorsal lateral prefrontal cortex and

ACC
Mental process and response

inhibition and selection
BG Basal ganglia Motor program retrieval

LTPM Striatal and cerebellar systems Long-term procedural knowledge
storage

SMA Supplementary motor area and
pre-SMA

Motor program assembly, error
detection, and bimanual

coordination
M1 Primary motor cortex Addressing spinal motorneourons
S1 Somatosensory cortex Sending the sensory information to

other areas
Hand – Execution of motor movement

functions but others may not (see Table 9.1). Because the routes of the queuing net-
work are composed of different brain areas (servers), different routes chosen by the
entities may lead to different information processing speeds or errors. If the entities
try to maximize response time performance, they may choose an optimal route that
maximizes speed, but may not minimize error. Some routes, however, may maxi-
mize both performance measures. Therefore, in different situations, different routes
may be chosen by the entities which activate different brain areas (servers). This
ability to have different routes becoming active forms the dynamic, self-organization
aspect of the queuing network. Consequently, there are two levels of learning within
the queuing network: (1) learning processes at the individual server level and (2)
self-organization or routes of the queuing network that change depending on the
stages of learning or the type of stimuli presented.

Learning Processes of the Individual Servers

AQ4

AQ5

In the motor learning process, the basal ganglia, striatal, and cerebellar systems
(BG and LTPM servers) play a major role in procedural knowledge acquisition [2].
Therefore, the current model focuses on the BG and the LTPM servers in quantifying
the learning processes of individual servers. It is assumed that the time for the BG
server to retrieve a motor program from the LTPM decreases exponentially as a
function of the number of practice trials (see Equation 9.1). Because the exponential
function fits learning processes of memory search, motor learning, visual search,
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mathematic operation tasks better than the power law [19] and has been applied in
modeling long-term memory retrieval [1] we used it to model our individual server
learning processes:

1/μBG = ABG +BBG exp−αBGNBG, (9.1)

1/μBG: motor program retrieving time; ABG: the minimal of processing time of
BG server after practice (314 ms, [35]); BBG: the change of expected value of pro-
cessing time from the beginning to the end of practice (2×314 = 628 ms, assumed).
αBG: the learning rate of server BG (0.00142, [18]); NBG: number of digraphs (letter
pairs excluding the space key) processed by server BG, which is implemented as a
matrix of diagraph frequency recorded in LTPM server.

Self-Organization of the Queuing Network

If the entities traversing the network try to maximize their information processing
speed and minimize error, it is appropriate to apply reinforcement learning algo-
rithms to quantify this dynamic process. Reinforcement learning is a computational
approach able to quantify how an agent tries to maximize the total amount of reward
it receives in interacting with a complex, uncertain environment [46]. Reinforcement
learning has also been applied in modeling motor learning in neuroscience [33] and,
therefore, may be appropriately applied to model brain network organization. To in-
tegrate the reinforcement learning algorithms with the queuing network approach,
it is necessary to define the state, transitions, and reward values of reinforcement
learning with the concepts of queuing networks. Below are the definitions:

1. State: the status that an entity is in server i.
2. Transition: An entity routed from server i to j.
3. Time-saving reward (r′t ): r′t = (1/wq)+μ j,t (2)

wq: time the entity spent waiting in the queuing of the server; μ j,t : processing
speed of the entity at that server.

4. Error-saving reward (r′′t ): r′′t = 1/(Nerror j,t +1) (3)

Nerror j,t : number of action errors of the previous entities made in the next server
j at tth transition. Q online learning algorithms in reinforcement learning are used
to quantify the processes that are used by entities to choose different routes based
on rewards of different routes.

1. Q online learning algorithm of time-saving reward

Qt+1
T Qt

T (i, j)+ ε{r′t + γmax
k

[Qt
T ( j,k)]−Qt

T (i, j)}, (9.2)

ε: learning rate of Q online learning (0 < ε < 1, ε = 0.99);
γ: discount parameter of routing to next server (0 < γ < 1,γ = 0.3);
Qt

T + 1(i, j): online Q value if entity routes from server i to server j in t + 1th
transition based on time-saving reward;
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maxk[Qt
T ( j,k)]: maximum Q value routing from server j to the next k server(s)

(k ≥ 1).
Equation (9.2) updates a Q value of a backup choice of routes (Qt

T (i, j)) based
on the Q value which maximizes over all those routes possible in the next state
(maxk[QtT ( j,k)]). In each transition, entities will choose the next server ac-
cording to the updated Qt

T (i, j).
2. Q online learning algorithm of error-saving reward

Qt+1
E Qt

E(i, j)+ ε{r′′t + γmax
k

[Qt
E( j,k)]−Qt

E(i, j)}. (9.3)

3. Trade-off of the two Q values

The choice of routes is determined by the trade-off between the two Q values. Cur-
rently, it is assumed that Qt+1

E (i, j) of error-saving reward has the higher priority
than the Qt+1

T (i, j) of time-saving reward: if Qt+1
E (i, j) > Qt+1

E (i,k), the entity will
choose the next server j whatever the value of Qt+1

T (i, j); if Qt+1
E (i, j) = Qt+1

E (i,k),
entity will choose the next server with greater Qt+1

T ; if Qt+1
E (i, j) = Qt+1

E (i,k) and
Qt+1

T (i, j) = Qt+1
T (i,k), entity will choose next server randomly. With these equa-

tions, we were able to successfully integrate queuing networks with reinforcement
learning algorithms.

9.2.4 Model Predictions of three Skill Learning Phenomena and
two Brain Imaging Phenomena

The three skill learning phenomena and the two brain imaging phenomena of tran-
scription typing described earlier in this chapter can be predicted by the queuing
network model with reinforcement learning.

9.2.4.1 Predictions of the three Skill Learning Phenomena

We assume that the processing times of the CE, BG, and SMA servers follow the
exponential distribution (see Table 9.1 and Fig. 9.1) and are independent from one
another. Therefore, if Y1 · · ·Yk are k independent exponential random variables rep-
resenting the processing times of the servers in our network, their sum X follows an
Erlang distribution. Based on features of Erlang distributions, we have

X =
k

∑
i=1

Yi, (9.4)

E[X ] = E

[
k

∑
i=1

Yi

]

=
k

∑
i=1

E[Yi] = k
1
λ

, (9.5)
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Var[X ] = Var

[
k

∑
i=1

Yi

]

=
k

∑
i=1

Var[Yi] = k
1
λ 2 . (9.6)

These mathematical results can be used to predict the skill learning phenomena,
together with the prediction described below that entities may learn to skip certain
server(s). First, because E[X ] = k(1/λ ), if k′ < k, then it follows that E[X ′] < E[X ].
This may be one of the reasons that the skipping of server(s) can explain a reduc-
tion in interkey time in typing normal text (the first skill learning phenomenon in
this chapter) and repetitive letters (the third skill learning phenomenon). Second,
skipping some of the servers will decrease the variance of the Erlang distribution
because if k′ < k, then Var[X ′] < Var[X ]. This is one possible reason why skipping
over server(s) can account for the reduction in the variability of interkey time in the
learning process (the second skill learning phenomenon).

9.2.4.2 Predictions of the First Brain Imaging Phenomenon

At the Pho server during the initial stages of learning, entities can go through the
CE server for eye movement control to locate the specific position of a target key on
the keyboard ( [12], see Fig. 9.1) and for response selection and inhibition. Entities
can also traverse the route from Pho to BG, but it takes longer than going through
the CE because the BG may not work effectively in retrieving the motor program
from LTPM [2] and its Q value of time-saving reward is smaller than that of CE.
Entities can also choose the route from Pho→M1 directly. However, the occurrence
of typing errors will decrease the Q value of error-saving reward from 18 Pho→M1.
As the number of practice trials increases, the route Pho→BG is selected by the
majority of the entities because the functions of CE are gradually replaced by the
BG with less process time based on parallel cortico-basal ganglia mechanisms [33].

Second, at the CE server, entities can traverse one of the routes from CE to BG,
SMA, or M1. If entities select the first route, the correct motor program will be re-
trieved without decreasing the Qt+1

E (i, j) value. If the second or the third route is cho-
sen, its Qt+1

E (i, j) value will decrease because no correct motor program is retrieved.
The third prediction involves the BG server. Since stimuli keep changing in

typing multidigit sentences, entities can go from the BG directly to M1 skipping
SMA whose function is motor program assembling [36]. However, ensuring move-
ment accuracy for error detection [17] will decrease Qt+1

E (i, j) in route BG. . .M1.
In sum, at the beginning of the learning process, entities will go through Pho→
CE→BG→SMA→M1. After learning, the majority of entity will travel Pho→BG→
SMA→M1.

9.2.4.3 Predictions of the Second Brain Imaging Phenomenon

If stimuli change from repetitive letters to regular words in the same task, the enti-
ties will change routes from Pho→M1 to Pho→BG→SMA→M1 because the error-
saving reward decreases in route Pho. . .M1 without the motor program functions of
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BG and the sequencing functions of SMA. This is our second prediction of changes
in neural processing with learning.

9.2.5 Simulation of the three Skill Learning Phenomena and the
two Brain Imaging Phenomena

9.2.5.1 The First and the Second Skill Learning Phenomena

Simulation results showed that the simulated interkey interval in the learning pro-
cess followed the power law of practice (R square = 0.8, p < 0.001). The simulated
interkey interval also improved from 385 to 180 ms, which was consistent with exist-
ing experimental data about performance changes from the unskilled typist (interkey
time 400 ms) with estimation error 3.75% (estimation error = |Y X |/X × 100%, Y :
simulation result; X : experiment result) to the skilled typist (177 ms interkey time)
with estimation error 1.69% (see Fig. 9.1).

As shown in Fig. 9.2, the change of the quartile range (75% quartile–25% quar-
tile) is significantly correlated with the change of the simulated speed (p < 0.05),
which is consistent with the experimental results of Salthouse [41]. This was one of
the phenomena not covered by TYPIST [22].

Fig. 9.2: Simulated variability of interkey interval and interkey interval in the learn-
ing process. Each stage represents 352,125 keystrokes.

9.2.5.2 The Third Skill Learning Phenomena

The simulated tapping rate (interkey interval in typing repetitive letters) and typing
speed of text (interkey interval in typing multidigit sentence) during the learning
process were found to be strongly correlated (p < 0.05), which is consistent with
the experimental results of Salthouse [41] who found the significant correlation be-
tween the two variables (p < 0.01). Therefore, our model successfully modeled
these behavioral phenomena with very high accuracy.
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9.2.5.3 The First Brain Imaging Phenomena

As shown in Fig. 9.3, at the beginning of practice, the CE (including DLPFC) and
the BG servers are highly utilized, while the SMA server (including pre-SMA) (3%)
and M1 and two hand servers (15%) are less utilized. After 352,125× 8 trials of
practice, the CE server (DLPFC) decreased its utilization greatly to 0%. Percentage
of utilization of SMA server is increased by 47%. M1 and two hand servers and
S1 also increased their percentage of utilization during the learning process by 85%
and 22%, respectively. These simulation results are consistent with the experimental
results in PET and fMRI studies [23,40,17] who found similar patterns of increases
and decreases in brain activity.

Fig. 9.3: Server utilization at the beginning and end of practice in learning to type
multidigit sentence.

9.2.5.4 The Second Brain Imaging Phenomena

After the model finished its learning process, it was able to simulate the second brain
imaging phenomenon of the skilled typist in typing different stimuli. The 1,600
letters to be typed by the model changed following this pattern: 1st−800th letters:
repetitive letters; 801st – 1,600 letters: multidigit sentence.

Figure 9.4 shows the percentage of utilization of the major servers in the different
stimulus conditions. When the model is typing repetitive letters, mainly M1 and
two hand servers are utilized. When the stimuli changed from repetitive letters to
multidigit sentences the utilization of SMA, BG, and S1 increased by 49, 90, and

Fig. 9.4: Server utilization when stimuli presented changed in the well-learned tran-
scription typing situation.
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22%, respectively. The model demonstrated that fewer entities travel from Pho to
M1 directly when the stimuli presented changes from repetitive letters to multidigit
sentences. These results are consistent with the fMRI results of [17].

In practice, because our queuing network model was built with a general structure
with common brain regions, it can be easily transformed to model other task situa-
tions, e.g., PRP [49]. Moreover, the current model can generate behavioral results by
the interaction of the queuing network servers without drawing complex scheduling
charts. These unique features offer great potential of the model for learning and can
easily be used by researchers in cognitive modeling and human factors.

9.3 Modeling the Basic PRP and Practice Effect on PRP with
Queuing Networks and Reinforcement Learning Algorithms

PRP (Psychological Refractory Period) is one of the most basic and simple forms
of dual-task situations and has been studied extensively in the laboratory for half a
century [31]. In the basic PRP paradigm, two stimuli are presented to subjects in
rapid succession and each requires a quick response. Typically, responses to the first
stimulus (Task 1) are unimpaired, but responses to the second stimulus (Task 2) are
slowed by 300 ms or more . In the PRP paradigm of Van Selst et al. [48], task 1 re-AQ6

quired subjects to discriminate tones into high or low pitches with vocal responses
(audio-vocal responses); in task 2 subjects watched visually presented characters
and performed a choice reaction time task with manual responses (visual-motor re-
sponses). They found that practice dramatically reduced dual-task interference in
PRP.

The basic PRP effect has been modeled by several major computational cognitive
models based on production rules, notably EPIC [31] and ACT-R/PM [7]. Based on
its major assumption that production rules can fire in parallel, EPIC successfully
modeled the basic PRP effect by using complex lock and unlock strategies in cen-
tral processes to solve the time conflicts between perceptual, cognitive, and motor
processing [31]. However, neither EPIC nor ACT-R/PM modeled the practice effect
on PRP.

Here we modeled PRP effects with the same model that modeled typing phenom-
ena and integrated queuing network theory [26, 27] with reinforcement learning al-
gorithms [46]. Model simulation results were compared with experimental results of
both the basic PRP paradigm and the PRP practice effects [48]. All of the simulated
human performance data were derived from the natural interactions among servers
and entities in the queuing network without setting up lock and unlock strategies or
drawing complex scheduling charts.

9.3.1 Modeling the Basic PRP and the Practice Effect on PRP with
Queuing Networks

Figure 9.5 shows the queuing network model that was used to model PRP effects.
The model architecture is identical to the model that was used to model typing
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Fig. 9.5: The general structure of the queuing network model (QN-MHP) with
servers and routes involved in the PRP task highlighted (server names, brain struc-
tures, major functions, and processing time are shown in Table 9.1).

phenomena. However, entities traverse different routes while performing PRP tasks
than they traversed when performing typing tasks.

Because the PRP effect prior to or at the beginning of learning (the basic PRP)
is a special case of the PRP effect during the learning process, the two phenomena
of PRP (basic and learned) are modeled with the same mechanisms in our queuing
network model. The experimental tasks and data of Van Selst et al. [48] were used
to test the model.

Brain areas (servers) and their routes related to the two PRP tasks in Van Selste’s
study were identified within the general queuing network structure based on recent
neuroscience findings [32, 15, 2], see Fig. 9.5). When exploring Fig. 9.5 entities
of task 1 (audio-vocal responses) cannot bypass the Hicog server because the 26
phonological judgment function is mainly mediated by the Hicog server, and thus
there is only one possible route for the entities of task 1 (see the dotted thick line in
Fig. 9.5) to traverse. However, the function of movement selection in task 2 (visual-
motor responses) is located not only in the Hicog server but also in the PM server.
Therefore, there are two possible routes for the entities of task 2 starting at Visk
server (see the gray and black solid lines in Fig. 9.5).

However, how might the entities of task 2 choose one of the two alternative
routes in the network? What is the behavioral impact of this choice on PRP and the
practice effect on PRP? These questions can be answered by integrating queuing
networks with reinforcement learning algorithms. Before exploring the mechanism
with which entities of task 2 select from one of the two routes, it is necessary to un-
derstand the learning process of individual brain areas. It was discovered that each
individual brain area reorganizes itself during the learning process and increases its
processing speed [44]. For example, for the simplest network with two routes (see
Fig. 9.6), if servers 2 and 3 change their processing speeds, different routes chosen
by an entity (1→3→4 or 1→2→4) will lead to different performance. Without con-
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sidering the effect of error, entities will choose the optimal route with the shortest
processing time if they want to maximize the reward of performance.

Consequently, to model learning, it is first necessary to quantify the learning
process in individual servers. Based on that, the condition under which an entity
switches between the two routes shown in Fig. 9.6 can be established and proved by
integrating queuing network with reinforcement learning. Finally, this quantitative
condition of route switching can be applied to the more complex model of 18 servers
with two routes (see Fig. 9.5) to generate the basic PRP and the reduction of PRP
during the learning process.

Fig. 9.6: The simplest queuing network with two routes.

9.3.1.1 Learning Process in Individual Servers

Based on the functions of the servers in Table 9.1, the two long-term memory servers
(LTDSM and LTPM) play the major roles in learning phonological judgments (task
1) and choice reaction (task 2) [2]. Because the learning effects of long-term mem-
ory are represented as speed of retrieval of production rules and motor programs
from the two long-term memory servers at the Hicog and the BG servers, it is im-
portant to quantify the processing time of the Hicog and the BG servers. In addition,
because the premotor cortex (PM) server is activated in learning visuomotor associ-
ations [32], changes in the processing speed of the PM server is also to be considered
in the learning process of the model.

Because the exponential function fits the learning processes in memory search,
motor learning, visual search, and mathematic operation tasks better than the power
law [18], it was again applied to model the learning process in the individual servers
here

1/μi = Ai +BiExp(−αiNi), (9.7)

μi: processing speed of the server i; (1/μi) is its processing time; Ai: the minimal
of processing time of server i after intensive practice; Bi: the change of expected
value of processing time of server i from the beginning to the end of practice; αi:
learning rate of server i; Ni: number of customers processed by server i.

For the BG server, 1/μBG: motor program retrieving time; ABBGB: the minimal
of processing time of BG server after practice (314 ms, [35]); BBG: the change of
expected value of processing time from the beginning to the end of practice (2×
314 = 628 ms, assumed); αBG: the learning rate of server BG (0.00142, [18]); NBG:
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number of entities processed by server BG which is implemented as a matrix of
frequency recorded in LTPM server.

For the Hicog and PM servers, to avoid building an ad hoc model and using the
result of the experiment to be simulated directly, nine parameters in the Hicog and
the PM servers were calculated based on previous studies (see Appendix 1). AQ7

9.3.1.2 Learning Process in the Simplest Queuing Network with two Routes

Based on the learning process of individual servers, the condition under which an
entity switches between the two routes in the simplest form of queuing networks
with two routes (each capacity equals 1) (from route 1 . . .2 . . .4 to route 1 . . .3 . . .4,
see Fig. 9.6) was quantified and proved by the following mathematical deduction.

1. Q online learning equation [46]

Qt+1(i, j)Qt(i, j)+ ε{rt + γmax
k

[Qt( j,k)−Qt(i, j)], (9.8)

where Qt+1(i, j) is the online Q value if entity routes from server i to server j
in t + 1th transition; maxk[Q( j,k)] represents maximum Q value routing from
server j to the next k server(s) (k ≤ 1); rt = μ j,t is the reward and is the pro-
cessing speed of the server j if entity enters it at tth transition; Njt represents
number of entities go to server j at tth transition; ε is the learning rate of Q on-
line learning (0 < ε < 1); γ is the discount parameter of routing to next server
(0 < γ < 1); and p is the probability of entity routes from server 1 to server 3
does not follow the Q online learning rule if Q(1,3) > Q(1,2). For example,
if p = 0.1, then 10% of entity will go from server 1 to server 2 even though
Q(1,3) > Q(1,2).
State is the status that an entity is in server i; transition is defined as an entity
routed from server i to j. Equation (9.8) updates a Q value of a backup choice
of routes (Q(t+1)(i, j)) based on the Q value which maximizes over all those
routes possible in the next state (maxk[Q( j,k)]). In each transition, entities will
choose the next server according to the updated Qt(i, j). If Q(1,3) > Q(1,2),
more entity will go from server 1 to server 3 rather than go to server 2.

2. Assumption

• ε is a constant which does not change in the current learning process (0 <
ε < 1) .

• Processing speed of server 4 (μ4) is constant.

3. Lemma 9.1. At any transition state t (t �= 0), if 1/μ2,t < 1/μ3,t then Qt+1(1,2) >
Qt+1(1,3)
Proof of Lemma 9.1 (see Appendix 2).
Based on Lemma 9.1 and Equation (9.7), we got Lemma 9.2:

4. Lemma 9.2. At any transition state t (t �= 0), if A2 + B2Exp(α2N2t) < A3 +
B3Exp(−α3N3t) then Qt+1(1,2) > Qt+1(1,3).
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9.3.2 Predictions of the Basic PRP and the Practice Effect on PRP
with the Queuing Network Model

Based on Equation (9.7) and Lemmas 9.1 and 9.2, we can predict the simulation
results of the basic PRP effect and the PRP practice effect. For the entities in task 2
(see Fig. 9.5), at the beginning of the practice phrase, because the visual-motor map-
pings are not established in PM [32], PM takes a longer time to process the entities
than the CE and the Hicog servers. Thus, the Q value from Visk to PM (Q(1,3))
is lower than the Q value from Visk to CE (Q(1,2)). According to Lemma 9.1, the
majority of the entities will go to the CE and Hicog server at the beginning of the
learning process in dual tasks. Consequently, entities from task 1 also go through the
CE and Hicog server thus producing a bottleneck at the Hicog server which produces
the basic PRP effect. This bottleneck is similar in theory to that of Pashler [34].

During the learning process, the CE will send entities which increase the process-
ing speed of PM based on the parallel learning mechanisms between the visual loop
(including CE) and the motor loop (including PM) ( [33], see Table 9.1). Therefore,
when the Q value of the 2P and P route of task 2 increases, an increasing number
of entities of task 2 will travel on the 2nd route and form an automatic process,
which creates two parallel routes that could be traversed in this dual-task situation.
However, because the learning rate of PM server (1/16,000) is lower than that of the
Hicog server for the entities in task 2 (1/4,000), the majority of the entities will still
go through the Hicog server.

9.3.3 Simulation Results

Figure 9.7 shows the simulation results of the basic PRP effect compared to theAQ8

empirical results (Van Selst et al., 1999). The linear regression function relating the
simulation and experimental results 32 is: Y = 1.057X − 58 (Y : experiment result;

Fig. 9.7: Comparison of simulation and experiment results at the beginning of prac-
tice (basic PRP effect).
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X : simulated result; R square = 0.984, p < 0.001;). Therefore, our model fits the
data well.

Figure 9.8 compares of simulation and experiment results of the PRP effect at
the end of practice (after 7,200 fs trials). The linear regression function relating the
simulated results and experiment results is: Y = 1.03X + 105 (R square = 0.891,
p < 0.001), therefore, our model accurately captures learning effects related to the
PRP effect.

Fig. 9.8: Comparison of the simulation and experiment results at the end of practice.

Lastly, Fig. 9.9 shows the comparison of the simulation and experimental results
during the practice process (7,200 trials). The linear regression function relating the
simulated results and experiment results is: Y = 0.965X + 10 (R square = 0.781,
p < 0.001). Moreover, it was found that the Q value of the second route of task
2 never exceeded that of the first route of task 2 during the practice process as

Fig. 9.9: Comparison of simulation and experiment results during the practice pro-
cess (7,200 trials).
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the majority of entities of task second went through the first route rather than the
second route. In some ways this is supported by recent neuroimaging work on PRP
by [20]. Those authors found little 33 differences in activations/neural networks
in the PRP task when performance was assessed at long and short SOAs. Such
large activation differences between short and long SOAs would be predicted by
active monitoring theories of the PRP effect. However, Jiang et al. [20] contend
that their data suggest that the PRP effect reflects passive queuing and not active
monitoring. This is yet other evidence supporting the queuing network architecture
and structure of our model as we did not find much difference in performance in
the Hicog server before and after practice and at short and long SOAs. In addition,
routes are chosen passively with Q learning and are not subject to active monitoring
processes.

With the formation of an automatic process during learning, two parallel routes
were formed in the dual-task situation, which partially eliminated the bottleneck at
the Hicog server. The PRP effect is reduced greatly with the decrease in the pro-
cessing time in both the Hicog and the PM server. However, since the majority of
the entities of the two tasks still went through the Hicog server, the effect of the
automatic process on PRP reduction does not exceed the effect of the reduction of
RT 1 on the PRP effect. This is consistent with the result of Van Selst et al. [48] that
the automatic process does grow from weak to strong but only weakly contributes
to PRP reduction.

9.4 Discussion

In the previous sections of this chapter, we described the modeling of brain ac-
tivation patterns as well as the behavioral phenomena in learning of two basic
perceptual-motor tasks (transcription typing and PRP). In modeling the phenom-
ena in typing, reinforcement algorithms guided how the entities traversed through
different routes before and after learning. The brain areas activated both before and
after learning are consistent with neuroimaging findings. In modeling PRP practice
effects, we used the same simulation model to quantify the formation of automatic
processes (reduction of the visual-motor task 2) during the learning processes in Van
Selst et al. [48] study.

There are several questions to be answered by future research utilizing our model.
First, neuroscience evidence has shown that many brain areas have overlapping
functionality which was not captured by the current model, which assumed discrete
brain areas with specific functions. This will increase the difficulty in modeling the
cooperation of information processes in the different brain areas. Second, the travel-
ing of entities from one server to another does not necessarily indicate the activation
of two brain areas. Brain area activation as uncovered with fMRI studies is based on
brain hemodynamics, which is an indirect measure of neural activity and thus has
poor temporal resolution. Therefore, using fMRI data to guide modeling of process-
ing times is somewhat tenuous. Therefore, 35 caution should be taken in comparing
the simulation results of the model with the results of fMRI studies.
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We are currently developing a computational model of the human cognitive sys-
tem which is able to account for experimental findings in both neuroscience and
behavioral science. It is one step further to understanding the quantitative mecha-
nisms of complex cognition and provides an alternative way to connect the brain’s
function with overt behavioral phenomena. We believe this current model is a firm
step in this direction.

Parameters setting at Hicog and PM server

• AHicog-symbol: minimal value of the processing time of task 2 entity in Hicog
server. Since choice reaction time (RT) of four alternatives can be reduced to RT
of two alternatives with practice (Mowbray et al., 1959), after intensive practice, AQ9

RT of eight alternative choices in Van Selst’s experiment will reduce to RT of
four alternatives without intensive practice. AHicog-symbol equals the RT of
four alternatives (Hick’s Law, intercept:150 ms, slope:170 ms/bit, Schmidt, 1988)
minus one average perception cycle (100 ms), two cognitive cycles (2× 70 ms),
and one motor cycle (70 ms) [10]. Therefore, AHicog-symbol = 150 + 170×
Log2(4)−100−2×70−70 = 180 ms.

• BHicog-symbol: change of processing time of task 2 entity in Hicog server at
the beginning and end of practice. At the beginning of the practice in single task
2, RT of the eight alternatives (Hick’s Law, intercept:150 ms, slope:170 ms/bit,
Schmidt, 1988) is composed of one perception cycle (100 ms), maximum pro- AQ10

cessing time at Hicog (AHicog-symbol + BHicog-symbol), and one motor cy-

cle (70 ms) [10]. Therefore, BHicog-symbol = 150 + 170× Log2(8)− 100−
AHicog-symbol−70 = 170 ms.

• αHicog-symbol,αHicog-tone: learning rate of Hicog server in processing the
task 2 and task 1 entities. Based on α = 0.001 approximately in Heathcote et al.’s
[18] study, learning difficulty increased four times because of the four incompat-
ible alternatives. Thus, αHicog-symbol = αHicog-tone = 0.001/4 = 1/4,000.

• AHicog-tone: minimal value of the processing time of task 1 entity in central
executive. After intensive practice, the discrimination task of the two classes of
tones in Van Selst’s (1999) experiment can be simplified into a choice reaction
time of two alternatives, requiring the minimum value of one cognitive cycle
(25 ms) [10].

• BHicog-tone: change of processing time of task 1 entity in Hicog at the be-
ginning and end of practice. At the beginning of the single task 1, the re-
action time to discriminate the two classes of tone is 642 ms (Flynn, 1943), AQ11

which is composed of one perception cycle (100 ms), two cognitive cycles
(70×2 ms), (AHicog-tone +BHicog-tone), and one motor cycle (70 ms). There-
fore, BHicog-tone = 642−100−2×70−AHicog-tone−70 = 307ms.

• APM-symbol: minimal value of the processing time of task 2 entity in PM. Af-
ter intensive practice, RT of the eight alternative choices in Van Selst’s experi-
ment will transform to RT of eight most compatible alternatives (RT = 217ms,
Schmidt, 1988) which is composed of one perception cycle and one motor cycle.
Therefore, APM-symbol = 217−100−70 = 47ms.
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• BPM-symbol: change of processing time of task 2 entity in PM at the beginning
and end of practice. At the beginning of practice in single task 2, RT of eight
alternative choice reaction time (Hick’s law: 50 ms, slope: 170 ms/bit) is com-
posed of one average perception cycle (100 ms), (APM-symbol +BPM-symbol),

one motor cycle (70 ms). Thus, BPM-symbol = 150 + 170×Log2(8)− 100−
APM-symbol−70 = 443ms.

• αPM-symbol: learning rate of PM in processing the task 2 entity. The speed of
formation of the automatic process in PM is slower than Hicog because it receives
the entities from CE server via the indirect parallel learning mechanism with
the four incompatible alternatives [33]. Thus, αPM-symbol = (0.001/4)/4 =
1/16,000.

Appendix

AQ12
Proof of Lemma 9.1 Lemma 9.1. At any transition state t (t �= 0), if 1/μ2,t , t <
1/μ3,t , then Qt+1(1,2) > Qt+1(1,3)

Proof. Using mathematic deduction method

(i) At t = 0: Q1(1,3) = Q1(1,2) = Q1(2,4) = Q1(3,4) = 0.
(ii)At t = 1: Using the online Q learning formula: Q2(1,3) = Q1(1,3) + ε[rt +
γQ1(3,4)−Q1(1,3)] = εμ3,1.

Note: because entity routes to only one server (server 4) maxb Qt(St + 1,b) =
Q(3,4),Q2(1,2) = εμ2,1,Q2(3,4) = εμ4,Q2(2,4) = εμ4; If 1/μ2,1 < 1/μ3,1 then
εμ3,1 < εμ2,1 (given 0 < ε < 1), i.e., Q2(1,2) > Q2(1,3). Thus, lemma is proved
at t = 1.

iii According to mathematic deduction method, Lemma 9.1 is correct: i.e., at tran-
sition state t = k: if 1/μ2,k < 1/μ3,k then Qk+1(1,2) > Qk+1(1,3). We want
to prove at transition state k + 1, lemma is still correct: i.e., At transition state
t = k +1:
if 1/μ2,k+1 < 1/μ3,k+1, then Qk+2(1,2) > Qk+2(1,3) At t = k +1: Qk+2(1,2) =
Qk+1(1,2)+ ε[μ2,k+1 + γεμ4−Qk+1(1,2)]

Qk+2(1,3) = Qk+1(1,3)+ ε[μ3,k+1 + γεμ4−Qk+1(1,3)], (9.9)

Qk+2(1,2)−Qk+2(1,3) = (9.10)

AQ13

Qk+1(1,2)+ε[μ2,k+1 +γεμ4−Qk+1(1,2)]−Qk+1(1,3)+ ε[μ3,k+1 + γεμ4−Qk+1(1,3)]
(9.11)

= (1− ε)[Qk+1(1,2)−Qk+1(1,3)]+(εμ2,k+1− εμ3,k+1) (9.12)
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With Equation (9.3) and 0 < ε < 1, we have

(1− ε)[Qk+1(1,2)−Qk+1(1,3)] > 0. (9.13)

Given 1/μ2,k+1 < 1/μ3,k+1 and 0 < ε < 1, then (εμ2,k+1− ε,μ3,k+1) > 0, i.e.,
Qk+2(1,3)−Qk+2(1,2) > 0

Thus, Lemma 9.1 is correct at t = k +1. Lemma 9.1 is proved.
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